
Software Engineering

Hans-Petter Halvorsen

Course Introduction

What is Software Engineering?

Software Engineering is the profession
of the Development and Management of

High Quality Software Systems within
given Time and Cost frames

Software Engineering

“To take you beyond
Programming to actually
Engineering Software”

Main purpose with this course:

Planning, Requirements Analysis, Software Design and Architecture, Software Testing, Software Deployment, etc.

Learning Goals
• You will be familiar with the most important features of

different System Development Processes,
• Making the transition to working life easier
• You will learn tools to communicate different aspects of

an abstract system. Both to customers and employees
• You will learn how to organize a Software Development

Project

Learning Goals - Details

We will learn how to build good (i.e. high quality) software, which
includes:

• Requirements Specification (Requirements Engineering/Analysis)

• Technical or Architectural Design

• Good User Experience (UX)

• Improved Code Quality and Implementation

• Testing

• System Documentation and User Documentation

• Deployment

Why Software Engineering?
• There are many differences between a one-person programming and

large software system development.
• The degree of complexities between these two approaches make it

necessary to bring more discipline into the development process.
• Modern software engineering is very complex and there are large

numbers of failures in many software projects and defects
encountered in the software products.

• All infrastructure for human livings rely on Software today (Traffic
Systems, Financial systems)

• That's why Software Engineering is needed

Software Engineering Course

https://www.halvorsen.blog/documents/teaching/courses/software_engineering.php

https://usn.instructure.com
Canvas:

Course Information, Course Schedule, Teaching material, Videos, etc.

https://www.halvorsen.blog/documents/teaching/courses/software_engineering.php
https://usn.instructure.com/

Course Schedule

https://www.halvorsen.blog/documents/teaching/courses/software_engineering.php

https://www.halvorsen.blog/documents/teaching/courses/software_engineering.php

The Learning Process

Preparations Activities in
Class

Complementary
Work

~13 ~13 ~13

0% 100%Knowledge

Most of the learning takes place outside the classroom: Do not forget the gain by being well
prepared when you get to the classroom, as well as work with the material afterwards. Learning
takes place where you do preparations and process the material afterwards. You need to work
actively with the contents.

Videos, Textbooks,
Software, etc.

Videos, Project Work, Quizzes, etc.Reviews, Project Work, etc.

Software Engineering Course

• This is a very practical course with few traditional lectures
• Instead there are lots of practical work, both individual

and in teams.
• Most of the theory and practical examples are provided

as videos and well-written text books
• In class we will work with the Project and so-called Week

Assignments.

Topics
• Software Planning, Project Management
• Requirements Engineering/Analysis
• Database Modeling
• UML (Unified Modeling Language)
• Software Development Processes (Waterfall, Agile Development, Scrum)
• Software Platforms (Desktop, Mobile, Web, Cloud, ..)
• Software Architecture
• Software Implementation
• Source Code Control and Bug Tracking
• Software Testing
• Software Documentation
• Software Deployment and Maintenance

Software
• Office 365, including MS Project
• Visual Studio (Enterprise Edition)
– C#
– ASP.NET (Framework for Web Development)

• Azure DevOps (previously Visual Studio Team Services)
• ERwin Database Modeling Tool
• SQL Server
• Microsoft Azure (Windows running in the Cloud)
• ...

We will use many tools you
are already familiar with,
and use more advanced
features in these tools

Web and Cloud

• We will focus on modern Web Applications and Cloud Platforms
in this course

• We will use ASP.NET
• ASP.NET is a Web Framework for creating Web Applications

developed Microsoft and integrated in Visual Studio
• Since you are already familiar with Win Forms, the transmission

to ASP.NET Web Forms should be easy. We will use C# when
creating ASP.NET Web Applications also, and the programming
model is very similar

• We will also use Microsoft Azure

Azure DevOps www.visualstudio.com

Software Engineering Tool for Project Management, Scrum, Source
Code Control, Bug Tracking, Collaboration, etc.

http://www.visualstudio.com/

Azure DevOps
• Formerly “Visual Studio Team Services” (VSTS)
• Azure DevOps is a Source Code Control (SCC), Bug

Tracking, Project Management, and Team
Collaboration platform from Microsoft
• Integrated with Visual Studio
• Web-based Project Management, including Scrum
• Free for up to 5 users www.visualstudio.com

http://www.visualstudio.com/

Literature/Textbooks
• Software Development - A Practical Approach

Halvorsen, Hans-Petter, 2018
• Software Engineering

I. Sommerville, 10 ed.: Pearson, 2015
• Essentials of Software Engineering

Frank Tsui; Orlando Karam; Barbara Bernal, 4 ed.,
Jones & Bartlett Learning

Free Download
(PDF)

Available
Online!

Recommended
to Buy!

Books

Software Engineering
I. Sommerville, 10 ed.: Pearson, 2015

Essentials of Software Engineering
Frank Tsui; Orlando Karam; Barbara Bernal, 4 ed.,
Jones & Bartlett Learning

Project
• A large Project will be the glue in this course, at it

will last the whole semester, beginning already the
first week.
• 3-4 Students in each Team
• You will be given Week Assignments and work

through the Project week by week the whole
semester

Team Project Milestones

Week Assignment
Week Assignment
Week Assignment

Week Assignment
Week Assignment

Alpha

Beta

RC

RTM

Iterations/Sprints:

Review

Review

Review

Final Delivery

Design

Implentation

Testing

Deployment

Requirements
“Weekly” Work:

M
eetings, Review

s, etc.

Overall Requirements (Project Description)

System Delivery with Documentation
Presentation and Demonstration

…
…

…
…

......

Coding, Program
m

ing

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e

Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)Pr
oj

ec
t M

an
ag

em
en

t (
G

an
tt

 C
ha

rt
, e

tc
.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan (SDP)

2.Requierements
/Design

Level of complexity in your solution?
The 80 – 20 Rule:

• It takes 20% of the time to finish 80% of your application -> Prototype
(80% finished)

• 80% of the users only use 20% of the features

Conclusion:

• Someone always tends to make things more complicated than
necessary!

• The main goal in this Project and Course is to make a functional
Prototype! – Not a fully working professional Product ready for sale

• Estimated Hours: 270 hours

Stakeholders

Product Owner

Scrum Master
Product Backlog

Development Team
3-9 persons

Sprint Backlog

Scrum Process:

Scrum Members:

Daily Scrum Meetings
Max 15 min.

Sprint Review

Scrum

A Framework for Software Development - Working Software at all times!

Developers

TestersArchitects

Designers

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: http://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
http://www.halvorsen.blog/

